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STRESS IN DILUTE SUSPENSIONS

STEPHEN L. PASSMAN*

Abstract. Generally, two types of theory are used to describe the field equations for suspensions. The

so-called "postulated" equations are based on the kinetic theory of mixtures, which logically ought to give

reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though

it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a

system of equations which is underdetermined, in a sense that can be made precise. On the other hand,

the so-called "averaging" theory starts with a determined system, but the very process of averaging renders

the resulting system underdetermined. I suggest yet a third type of theory. Here, the kinetic theory of

gases is used to motivate continuum equations for the suspended particles. This entails an interpretation

of the stress in the particles that is different from the usual one. Classical theory is used to describe the

motion of the suspending medium. The result is a determined system for a dilute suspension. Extension

of the theory to more concentrated systems is discussed.

1. Introduction. In theories of multiphase flows, it is natural to postulate or to

derive equations of balance similar to those occurring in the theory of dilute mixtures

of gases [1,2]. The usual process of doing so, along with reasonable assumptions for the

constitutive properties of the materials composing the flow, always leads to a system with

more unknowns than equations. Though there is no definitive reason that this is a bad

situation, intuition abetted with proved theorems for special types of systems indicates

that the normal desirable situation is the same number of equations as unknowns. The

resulting quandary for multiphase flows is known as the "closure problem", and methods

for "solving" or "closing" it, that is, finding "sufficient" additional equations, has been

the focus of considerable research in multiphase flows. Here, we try to shed some light on

such problems. Essential to doing so is stating the problems unequivocally. In order to do

that, we choose a special but interesting physical situation, then give typical equations of

balance and constitutive equations for that physical situation, according to a continuum

theory and an averaging theory. The closure problem occurs in both types of theories,

though its form is different. However, it is possible to formulate theories in which the

closure problem does not occur, and therefore need not be solved. A physical basis for

such a system is presented, and a putative set of field equations is suggested.

2. Determined, Underdetermined, and Overdetermined Systems of Equa-

tions. Assume we have a system of equations of the form

fi(yj, DkYj) = O,

with i = 1,...,n; j = 1,...,m; and k = 1,...,p. The fi are n functions of the m

variables yj and their derivatives up to order p. The system is called determined if n = rn,
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overdetermined if n > m, and underdetermined if n < m. By our definition, all systems

of equations are of one of these three types. Ideally, of course, it would be convenient if

determined systems always had solutions and they were unique, if overdetermined systems

never had solutions, and if underdetermined systems always had families of solutions. That

this is not the case can be shown by examples. To begin, consider the underdetermined

system

(1) x] + x=== o.

Naturally, specifying a system of equations is meaningless without specifying their domain,

but since this paper is informal, I follow the convention of doing so tacitly, that is, all

functions axe mappings of all real variables for which they can be defined reasonably into

a range defined by the function. Here, the underdetermined algebraic system (1) has the

single unique solution

X 1 = 0, Z 2 = 0.

Now consider the determined system

X 1 "31-X 2 ---- 1,

(2) 2xl -4-2x2 = 2.

This system does not have a unique solution, rather it has an infinite one-parameter family

of solutions. Finally, consider the overdetermined system

(3)

Xl + x2 = 1,

2xa + 2x2 = 2,

2Xl -}-4x2 = 4.

This system has a unique solution. All of the examples cited involve algebraic equations,

not differential equations, but of course examples of the same type can be constructed with

differential systems.

It is easy to object to the arguments above because the systems cited are "special" or

"pathological". Indeed, I agree with that type of objection, and in a sense that is just the

point of this discussion, for to make such arguments, one must use very special properties

of the systems. Furthermore, for each system, it would have been possible to rearrange the

system using simple manipulations, obtaining very complicated new systems with exactly

the same properties. Proofs of existence or non-existence, uniqueness or non-uniqueness,

then would be much more elaborate exercises, perhaps depending on sophisticated math-

ematics or luck for ultimate outcome.

A different line of argument is possible. Most often, the equations governing multi-

phase flow are systems of partial differential equations, so complicated that they are not
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easily amenable to existence or uniqueness theorems. Such equations may be relevant to

important problems in technology, so important that they must be solved, in no matter

in how vague a sense, immediately. More often than not, that means the use of large

computer codes. Despite the above examples, we find that an intrinsic part of building

such codes is the desire of the numerical analyst for determined systems, that is, systems

determined in exactly the sense defined here. The idea that the equations obtained by

specialists in multiphase flow are "independent" is supported in some vague sense by the

fact that they have different physical meanings. For example, some are balance equations

for the constituents, some are constitutive equations, and some are constraints.

3. Continuum Theories of Multiphase Flows. Here, we consider a standard type

of theory for multiphase flows, as derived from continuum considerations. 1 Intrinsic to such

considerations is the assertion that each constituent fills all of a region of space. This is the

basic assumption of theories of interpenetrating continua or "solutions" [4]. The theory

then is made to model a multiphase medium by the inclusion of volume fractions Ca as

basic variables. A typical set of field equations for such a continuum having n constituents

is

¢_ + ¢_ divv_ =0,

(4)
p_,a = p_b_ + m_ + divT_,

n

P,a=lma = 0,

{T_,m_} = g(vb, Cb, and their derivatives).

Here for simplicity we consider only pure mechanics, and the symbols have the obvious

meanings. The first equation expresses the fact that the material is saturated; the second

and third axe balances of mass and momentum for each of the constituents. Each con-

stituent is assumed to be incompressible, and the pa are the reactions to those constraints.

The fourth equation is conservation of mass for the mixture, and the last equations express

constitutive properties of the constituents, in particular the dependence of the stress on the

deformation rate and other properties for each constituent, and appropriate expressions

for interactions of the two materials. We note that these last expressions can be somewhat

problematical, and in fact debate about their forms has generated a considerable litera-

ture. They are not discussed here. Rather, we assume they are known for applications of

particular interest. 2 Our intuitive feeling from considering the physics of this situation is

that such a system of equations is "complete", but in fact that is not the case. Here and

henceforth, for the purpose of counting equations, we assume the multiphase flow consists

of two constituents. Though such is not always the case, for the purpose of our argu-

ments here, that case is general. The result is a system of 9 equations in the 10 unknowns

1Discussion of the basis of such theories, as well as references to the standard works, are given in [3].

=See [5] and [6] for a discussion of these equations.
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{pa,Ca,v_}, that is, the systemis underdetermined. The usual physical motivation for this

apparent quandary is plausible: Though Equations (4) express the exchange of momentum

between constituents, that is not the only way the constituents interact, for in addition,

there should be a force balance between the constituents. The most primitive visualization

of this is sufficient for arguments here. That is, the solid phase is considered to consist of

spherical particles of one size, surrounded by the fluid phase. Then a radial force balance

on a single particle gives

(5) p_ = p/.

This obvious and elegant closure argument gives a system of equations which is notori-

ously ill-behaved [7,8], so much so that it must be rejected. More sophisticated arguments

are possible, and they sometimes appear to suffice to render the system of equations thus

obtained to be at least well-behaved enough to be handled by standard computational

techniques. Usually, the arguments adduced are generalizations of those leading to Equa-

tion (5) in that they consider a particle in a flow field of a known type at infinity, then

use techniques of hydrodynamics to solve or partially solve for the flow field around the

spherical particle. Surface tension may be considered also. Of course the resulting pressure

on the particle is a function of position on its surface relative to the flow field at infinity,

so some sort of integration is required. The result is

(6) ps = py-l- f(II,a),

where H denotes properties of the flow field, and a denotes properties sufficient to charac-

terize surface tension. I note that since f depends upon the flow field at infinity, adducing

it as a constitutive relation valid for all flows has the potential for leading to inaccurate

results, a

In addition to the mathematical argument against using Equation (5) as a closure

relation, there is a physical argument against it, which also is inherited by Equation (6).

In doing the arguments leading to these equations, the assumption is that Ps and py are

pressures "in" the respective materials, and that it is appropriate to write an expression

for one in terms of the other. The need for the closure relation comes from arguments

about the system (4). In this system, the pressures are derived as reactions to constraints.

Therefore [10], they are dependent variables of the system of equations, totally independent

of one another. In treating the complete system of equations and boundary conditions. 4

the quantities ps and PI thus cannot be related a priori. Another way to see this is that in

fact Equations (4) are field equations for the whole continuum, while the closure relation

3A similar difficulty arises in rheology, where it is commonly known [9] that no constitutive equation

giving an accurate representation of the physics of shearing flows also represents stretching flows adequately.

4Boundary conditions in themselves constitute a difficult problem for multiphase flows. They are not

discussed in this paper.
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(6) is not. Rather, it is derived from a "micromechanical" argument, then scaled up in a

way the nature of which never is made clear, so that the symbols p_ and pl in Equations

(6) are assumed to have the same meaning as the same symbols in the closure relation,

without proof or explanation. 5

4. Averaging Theory. The basic ideas behind averaging theories are diametrically

opposite from that of the continuum theories, though the objective--finding differential

equations for fields, valid throughout a body--is exactly the same. It is perhaps fortuitous,

or perhaps a sign that the equations actually represent some sort of physical "truth", that

the forms of the equations resulting from the two approaches are so similar. For averaging

theories, the region of space occupied by the material is thought of as being occupied by

two different types of body, the suspended particles and the suspending medium. Each of

the types of body is considered to be distinct in the sense that the join [11] of the bodies

constitutes all of the space occupied by the composite body, while the meet is empty. Then

each of the types of body is an ordinary continuum, and satisfies exactly the balance and

constitutive laws expected of an ordinary continuum, that is,

(7)

div va = O,

pa_'a = paba + divT_,

{T_} = g(vb, and their derivatives).

Here, of course, the bodies still are capable of momentum interaction, but unlike the previ-

ous situation, the micromechanical model for momentum interaction has a clear meaning.

This is eight equations in eight unknowns, and thus is a determined system. Moreover,

conditions for the difference of pressure such as Equation (6) now have a correct theoretical

status, for now they are not field equations, rather, they are boundary conditions. Thus a

determined system is obtained, and it is mathematically correct and physically plausible.

The difficulty, of course, is that to formulate a boundary-value problem, a reasonable set

of boundary and initial values for every particle in the system is needed. Such information

normally is not available for any physical problem. Even if it were, finding a solution, with

or without a computer as an intermediary, would be a nearly hopeless task. Moreover,

even if such a solution were found, most of the information it contained would be of little

use, because it would be too detailed. A plausible way to digest such data would be to

average it in some sense. The usual approach in averaging theory is, not to go to the

considerable trouble of averaging the solutions to (7), but rather to average (7) and then

solve the averaged equations. Such an approach is highly appealing intellectually, but is

fraught with mathematical difficulty. This paper is not the place to discuss such difficulties

in detail. One, of course, is that the term "average" which has been used in a very vague

5Of course, the same argument can be made for the expressions in (4) for ma. There, however, the status

of the equations is clear, because the appropriate micromechanical arguments can be used as motivation

for the continuum theory, which then gives exact relations having the same status as field equations.
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way here,must be given a precisemeaning. It is fortuitous that, for most of the averaging
methods tried so far, the resulting equations have almost the form of the Equations (4)
derived from the continuum theory. Unfortunately, for every method of averagingI have
seen,though a determined systemis averaged,the result of the averagingprocessis an un-
derdeterminedsystem,that is, the averagingprocessmakesthe closureproblem reappear.
Most readerswill be familiar with why this happens without going through the details,
for the averagingprocessalwaysis similar to that usedin turbulence theory and someof
the extra terms areof the sameform asReynoldsstresses.In a broad sense,then, though
the continuum theory and the averaging theory start from different places and proceed by

different methods, they end in approximately the same place: underdetermined systems of

approximately the same form.

5. Sketch of a Theory for Dilute Suspensions. Previously in this paper, much

has been made of the fact that most of the equations in the continuum theory have been

"postulated". It is possible to interpret that terminology as meaning that they have been

made up with no mathematical or physical basis. In fact, that is far from true. The

kinetic theory of dilute monatomic gases for identical gas molecules is well-known and

is commonly taught in courses for graduate students in science and engineering [1,2,12].

Much less well known is the fact that there is a similar theory for gases where there are

a finite number of different types of molecules; in other words, a solution of several gases

[13,14]. The resulting balance equations are exactly identical to those for the postulated

theory of mixtures.

Here, I use the motivation of the kinetic theory of gases to support a mixture the-

ory in an entirely different way. Most important for the discussion here is the fact that

there is an exact definition of the pressure, and it is not the pressure "in" the particles,

rather it is a momentum flux -- an entirely different concept. 6 Moreover, it is possible to

force agreement of the theory with that of a viscous compressible gas, with the viscosity

determined in terms of molecular parameters. I consider a dilute solution of particles in

an inviscid fluid. Consider only the particles. They are an agglomeration of molecules,

exactly like those in the theory of a monatomic gas, except that the scale of the molecules

is somewhat larger than in a gas. Thus, precisely the sa_e arguments can be used to

motivate a continuum theory for the particle phase of the multiphase flow as is used for

a gas. All of the expressions are the same, and e.g., one can accept the viscosity of the

particle phase as a phenomenological coefficient, or one can consider it to be determined

from molecular quantities, according to one's taste. In either case, unlike in the theories

discussed in the previous two sections of this paper, it does have meaning. The equations

6In another paper in this volume, O. Walton uses the same definition in his computer molecular dy-
namics simulations.
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for the particle phase then are

(8)

p, + Ps div vs = 0,

p_s = p_bs + m+ div T,,

p, =
Ts = _'_(sym gradvs).

This is a system of 5 equations in 5 unknowns, that is, a determined system. Now let the

molecules be submerged in an incompressible fluid. Naturally, there will be an interaction

between the particles and the fluid, and this interaction can be expressed as a constitutive

equation for m, which can be thought of as a part of the body force b I. Of course, the

equations for the fluid phase are the expected ones,

(9)

div vf = 0,

pflrf = pfbf - m + div Tf

TI = "l"/(sym grad v f).

again, a determined system. Thus, for a theory of this type, no closure problem exists. 7

Generally in a theory of this type, one expects to see volume fractions appear intrin-

sically. Since the ideas here are for a very dilute, saturated suspension, the concept is not

very important, except, perhaps, in the constitutive equation for m and in formulas for

the "effective viscosity" [5,12]. Of course the idea can be introduced formally by setting

Pf = 7f_f,

with 7f a constant, and

_f -t- (_S = 1.

These substitutions introduce the same number of equations as unknowns.
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